4.6 Article

A Raman Spectroscopic Study of Cell Response to Clinical Doses of Ionizing Radiation

Journal

APPLIED SPECTROSCOPY
Volume 69, Issue 2, Pages 193-204

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1366/14-07561

Keywords

Raman spectroscopy; RS; Radiation biology; Radiobiology; Personalization radiation therapy; Personalization RT; Single-cell Raman spectroscopy; Single-cell RS

Funding

  1. Natural Sciences and Engineering Research Council
  2. Western Economic Diversification Fund
  3. Canadian Institute for Health Research
  4. BC Cancer Foundation
  5. Michael Smith Foundation for Heath Research

Ask authors/readers for more resources

The drive toward personalized radiation therapy (RT) has created significant interest in determining patient-specific tumor and normal tissue responses to radiation. Raman spectroscopy (RS) is a non-invasive and label-free technique that can detect radiation response through assessment of radiation-induced biochemical changes in tumor cells. In the current study, single-cell RS identified specific radiation-induced responses in four human epithelial tumor cell lines: lung (H460), breast (MCF-7, MDA-MB-231), and prostate (LNCaP), following exposure to clinical doses of radiation (2-10 Gy). At low radiation doses (2 Gy), H460 and MCF-7 cell lines showed an increase in glycogen-related spectral features, and the LNCaP cell line showed a membrane phospholipid-related radiation response. In these cell lines, only spectral information from populations receiving 10 Gy or less was required to identify radiation-related features using principal component analysis (PCA). In contrast, the MDA-MB-231 cell line showed a significant increase in protein relative to nucleic acid and lipid spectral features at doses of 6 Gy or higher, and high-dose information (30, 50 Gy) was required for PCA to identify this biological response. The biochemical nature of the radiation-related changes occurring in cells exposed to clinical doses was found to segregate by status of p53 and radiation sensitivity. Furthermore, the utility of RS to identify a biological response in human tumor cells exposed to therapeutic doses of radiation was found to be governed by the extent of the biochemical changes induced by a radiation response and is therefore cell line specific. The results of this study demonstrate the utility and effectiveness of single-cell RS to identify and measure biological responses in tumor cells exposed to standard radiotherapy doses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available