4.7 Article

Hemolysis-free blood plasma separation

Journal

LAB ON A CHIP
Volume 14, Issue 13, Pages 2287-2292

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4lc00149d

Keywords

-

Funding

  1. Bill & Melinda Gates Foundation (Global Health) [OPP1028785]

Ask authors/readers for more resources

Hemolysis, involving the rupture of red blood cells (RBCs) and release of their contents into blood plasma, is a major issue of concern in clinical fields. Hemolysis in vitro can occur as a result of errors in clinical trials; in vivo, hemolysis can be caused by a variety of medical conditions. Blood plasma separation is often the first step in blood-based clinical diagnostic procedures. However, inhibitors released from RBCs due to hemolysis during plasma separation can lead to problems in diagnostic tests such as low sensitivity, selectivity and inaccurate results. In particular, a general lack of simple and reliable blood plasma separation methods has been a major obstacle for microfluidic-based point-of-care (POC) diagnostic devices. Here we present a hemolysis-free microfluidic blood plasma separation platform. A membrane filter was positioned on top of a vertical up-flow channel (filter-in-top configuration) to reduce clogging of RBCs by gravity-assisted cells sedimentation. With this device, separated plasma volume was increased approximately 4-fold (2.4 mu L plasma after 20 min with 38% hematocrit human whole blood), and hemoglobin concentration in separated plasma was decreased approximately 90% due to the prevention of RBCs hemolysis, when compared to conventional filter-in-bottom configuration blood plasma separation platforms. On-chip plasma contained similar to 90% of protein and similar to 100% of nucleic acids found in off-chip centrifuged plasma, confirming comparable target molecule recovery efficiency. This simple and robust on-chip blood plasma separation device integrates with downstream detection modules to ultimately create sample-to-answer microfluidic POC diagnostics devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available