4.7 Review

Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues

Journal

LAB ON A CHIP
Volume 12, Issue 12, Pages 2103-2117

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2lc21142d

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office (MTO) through Space and Naval Warfare Systems Command (SPAWAR) Systems Center (SSC) [N66001-11-1-4013]

Ask authors/readers for more resources

Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available