4.7 Article

Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720

Journal

LAB ON A CHIP
Volume 12, Issue 8, Pages 1554-1560

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2lc20648j

Keywords

-

Funding

  1. NSERC
  2. NSERC Strategic Network for Bioplasmonic Systems (BiopSys), Canada
  3. Canada Foundation for Innovation (CFI)
  4. British Columbia Knowledge and Development Fund (BCKDF)
  5. University of Victoria
  6. NSFC [21105092]

Ask authors/readers for more resources

The fabrication and on-chip integration of surface-enhanced Raman scattering (SERS) optrodes are presented. In the optrode configuration, both the laser excitation and the back-scattered Raman signal are transmitted through the same optical fiber. The SERS-active component of the optrode was fabricated through the self-assembly of silver nanoparticles on the tip of optical fibers. The application of SERS optrodes to detect dyes in aqueous solution indicated a limit of quantification below 1 nM, using nile blue A as a molecular probe. Using the optrode-integrated microfluidic chip, it was possible to detect several different dyes from solutions sequentially injected into the same channel. This approach for sequential detection of different analytes is applicable to monitoring on-chip chemical processes. The narrow bandwidth of the vibrational information generated by SERS allowed solutions of different compositions of two chemically similar dyes to be distinguished using a dilution microfluidic chip. These results demonstrate the advantages of the SERS-optrode for microfluidics applications by illustrating the potential of this vibrational method to quantify components in a mixture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available