4.7 Article

A microfluidic-based hydrodynamic trap: design and implementation

Journal

LAB ON A CHIP
Volume 11, Issue 10, Pages 1786-1794

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0lc00709a

Keywords

-

Funding

  1. NIH [4R00HG004183-03]
  2. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [R00HG004183] Funding Source: NIH RePORTER

Ask authors/readers for more resources

We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic PDMS-based microfluidic device. In this work, we characterize device design parameters enabling precise control of stagnation point position for efficient trap performance. The microfluidic-based hydrodynamic trap facilitates particle trapping using the sole action of fluid flow and provides a viable alternative to existing confinement and manipulation techniques based on electric, optical, magnetic or acoustic force fields. Overall, the hydrodynamic trap enables non-contact confinement of fluorescent and non-fluorescent particles for extended times and provides a new platform for fundamental studies in biology, biotechnology and materials science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available