4.7 Article

Mechanical stimulation of epithelial cells using polypyrrole microactuators

Journal

LAB ON A CHIP
Volume 11, Issue 19, Pages 3287-3293

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1lc20436j

Keywords

-

Funding

  1. Swedish Foundation for Strategic Research (OBOE Strategic Research Center for Organic Bioelectronics)
  2. VINNOVA
  3. Knut and Alice Wallenberg Foundation
  4. Royal Swedish Academy of Science
  5. Onnesjo Foundation

Ask authors/readers for more resources

The importance of mechanotransduction for physiological systems is becoming increasingly recognized. The effect of mechanical stimulation is well studied in organs and tissues, for instance by using flexible tissue culture substrates that can be stretched by external means. However, on the cellular and subcellular level, dedicated technology to apply appropriate mechanical stimuli is limited. Here we report an organic electronic microactuator chip for mechanical stimulation of single cells. These chips are manufactured on silicon wafers using traditional microfabrication and photolithography techniques. The active unit of the chip consists of the electroactive polymer polypyrrole that expands upon the application of a low potential. The fact that polypyrrole can be activated in physiological electrolytes makes it well suited as the active material in a microactuator chip for biomedical applications. Renal epithelial cells, which are responsive to mechanical stimuli and relevant from a physiological perspective, are cultured on top of the microactuator chip. The cells exhibit good adhesion and spread along the surface of the chip. After culturing, individual cells are mechanically stimulated by electrical addressing of the microactuator chip and the response to this stimulation is monitored as an increase in intracellular Ca2+. This Ca2+ response is caused by an autocrine ATP signalling pathway associated with mechanical stimulation of the cells. In conclusion, the present work demonstrates a microactuator chip based on an organic conjugated polymer, for mechanical stimulation of biological systems at the cellular and sub-cellular level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available