4.7 Article

Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency

Journal

LAB ON A CHIP
Volume 10, Issue 17, Pages 2258-2264

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c003728a

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP1094179]
  2. Monash University Research and Graduate School
  3. Faculty of Engineering

Ask authors/readers for more resources

In this study we investigate the liquid sample delivery speed and the efficiency of microfluidic channels for low-cost and low-volume diagnostic devices driven only by capillary forces. We select open, non-porous surface grooves with a V-shaped cross section for modeling study and for sensor design. Our experimental data of liquid wicking in V-grooves show an excellent agreement with the theoretical data from the V-groove model of Rye et al. This agreement allows us to quantitatively analyze the liquid wicking speed in V-grooves. This analysis is used to generate data for the design of sensors. By combining V-groove channels and printable paper-like porous detection zones, microfluidic diagnostic sensors can be formed. Non-porous V-grooves can be fabricated easily on polymer film. Suitably long surface V-grooves allow short liquid transport time (< 500 ms), thus reducing the evaporation loss of the sample during transport. Non-porous V-grooves also significantly reduce chromatographic loss of the sample during transport, therefore increasing the sample delivering efficiency. Sensors of such design are capable of conducting semi-quantitative chemical and biochemical analysis (i.e. with a calibration curve) with less than 1000 nL of sample and indicator solution in total.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available