4.7 Article

Integrated two-step gene synthesis in a microfluidic device

Journal

LAB ON A CHIP
Volume 9, Issue 2, Pages 276-285

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b807688j

Keywords

-

Funding

  1. Institute of Bioengineering and Nanotechnology

Ask authors/readers for more resources

Herein we present an integrated microfluidic device capable of performing two-step gene synthesis to assemble a pool of oligonucleotides into genes with the desired coding sequence. The device comprised of two polymerase chain reactions (PCRs), temperature-controlled hydrogel valves, electromagnetic micromixer, shuttle micromixer, volume meters, and magnetic beads based solid-phase PCR purification, fabricated using a fast prototyping method without lithography process. The fabricated device is combined with a miniaturized thermal cycler to perform gene synthesis. Oligonucleotides were first assembled into genes by polymerase chain assembly(PCA), and the full-length gene was amplified by a second PCR. The synthesized gene was further separated from the PCR reaction mixture by the solid-phase PCR purification. We have successfully used this device to synthesize a green fluorescent protein fragment (GFPuv) (760 bp), and obtained comparable synthesis yield and error rate with experiments conducted in a PCR tube within a commercial thermal cycler. The resulting error rate determined by DNA sequencing was 1 per 250 bp. To our knowledge, this is the first microfluidic device demonstrating integrated two-step gene synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available