4.7 Article

Artificial cilia for active micro-fluidic mixing

Journal

LAB ON A CHIP
Volume 8, Issue 4, Pages 533-541

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b717681c

Keywords

-

Ask authors/readers for more resources

In lab-on-chip devices, on which complete (bio-)chemical analysis laboratories are miniaturized and integrated, it is essential to manipulate fluids in sub-millimetre channels and sub-microlitre chambers. A special challenge in these small micro-fluidic systems is to create good mixing flows, since it is almost impossible to generate turbulence. We propose an active micro-fluidic mixing concept inspired by nature, namely by micro-organisms that swim through a liquid by oscillating microscopic hairs, cilia, that cover their surface. We have fabricated artificial cilia consisting of electro-statically actuated polymer structures, and have integrated these in a micro-fluidic channel. Flow visualization experiments show that the cilia can generate substantial fluid velocities, up to 0.6 mm s(-1). In addition, very efficient mixing is obtained using specially designed geometrical cilia configurations in a micro-channel. Since the artificial cilia can be actively controlled using electrical signals, they have exciting applications in micro-fluidic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available