4.2 Article

Alterations in Membrane Transport Function and Cell Viability Induced by ATP Depletion in Primary Cultured Rabbit Renal Proximal Tubular Cells

Journal

KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY
Volume 13, Issue 1, Pages 15-22

Publisher

KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY
DOI: 10.4196/kjpp.2009.13.1.15

Keywords

ATP depletion; Membrane transport; cPLA(2); Serine/cysteine proteases

Ask authors/readers for more resources

This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide (KCN)/0.1 mM iodoacetic acid (IAA), and membrane transport function and cell viability were evaluated by measuring Na+-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in Na+-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited Na+-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a Na+ pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in Na+-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers (dimethylthiourea and thiourea), and amino acids (glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase A(2) (cPLA(2)). The ATP depletion-dependent arachidonic acid release was inhibited by cPLA(2) specific inhibitor AACOCF(3). ATP depletion-induced alterations in Na+-dependent phosphate uptake and cell viability were prevented by AACOCF(3.) Inhibition of Na+-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and cPLA(2) activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available