4.4 Article

Characterization of TiO2-coated ceramic foam prepared by modified sol-gel method and optimization of synthesis parameters in photodegradation of Acid Red 73

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 30, Issue 10, Pages 1855-1866

Publisher

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-013-0125-5

Keywords

Titanium Dioxide; Modified Sol-gel Method; Structural Properties; Response Surface Methodology; Immobilization on Alumina Foam

Ask authors/readers for more resources

TiO2 nanoparticles were synthesized by the P-25 powder modified sol-gel method under different TTIP (Titanium tetraisopropoxide) concentrations, P-25 loading and the gelation pHs. Structural properties of nanoparticles were characterized by XRD, FESEM and BET analysis. Results show that crystallinity level, particle size and the surface area are a function of P-25 loading and gelation pH, whereas TTIP concentration affects only the crystalline composition. Response surface methodology based on central composite design was used to optimize these synthesis parameters in photodegradation of Acid Red 73. The degradation efficiency was significantly affected by P-25 loading, pH value of gelation and the interaction effect between TTIP concentration and P-25 loading. The optimal values of parameters were found to be a pH of 1.34, a TTIP concentration of 0.25 M and a P-25 loading of 39.76 g/L. At optimal synthesis conditions, TiO2 film was coated on alumina foam and its structural properties were characterized by XRD, SEM and BET technique. The photocatalytic activity of the as-prepared films was found to be higher than that of the films prepared by the sol-gel method and those made from the slurries of P-25. The reasonable photocatalytic performance and good stability offered by the optimized film make it as an effective alternative for large application of water treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available