4.4 Article

Electrochemical characteristics of amophous carbon coated silicon electrodes

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 26, Issue 4, Pages 1034-1039

Publisher

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-009-0172-0

Keywords

Fullerene C-60; Carbon Film; r.f. Plasma Sputtering; UV-Vis Spectra; Raman Spectra; Anode of Lithium Secondary Batteries

Ask authors/readers for more resources

The properties of carbon films deposited by the radio frequency plasma sputtering of a fullerene C-60 target were investigated to elucidate the dependence on the plasma power. A radio frequency argon plasma power ranging from 50 to 300W at a pressure of 1.3 Pa was applied for sputtering. This corresponds to a self-bias potential on the target ranging from -95 to -250 V and a maximum argon ion energy ranging from 240 to 575 eV. The analysis of the G and D peaks in the Raman spectra shows that the films are similar to tetragonal hydrogenated amorphous carbon annealed at 600-1,000 A degrees C. The electron band structure of the carbon films deposited by the sputtering of C-60 depends on the plasma power. The coating effect of these carbon films on the capacity performance of the silicon film electrode of lithium secondary batteries was significant in our experimental range. An electrochemical test revealed that such carbon thin film on the silicon electrode plays an important role in mitigating the capacity fading during the charge and discharge processes. The test revealed that the film formed at a plasma power of 300 W is the most effective.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available