4.7 Article

Encoding words into Cloud models from interval-valued data via fuzzy statistics and membership function fitting

Journal

KNOWLEDGE-BASED SYSTEMS
Volume 55, Issue -, Pages 114-124

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.knosys.2013.10.014

Keywords

Computing with words; Cloud model; Enhanced interval approach; Fuzzy statistics; Membership function fitting; Histogram

Ask authors/readers for more resources

When constructing the model of a word by collecting interval-valued data from a group of individuals, both interpersonal and intrapersonal uncertainties coexist. Similar to the interval type-2 fuzzy set (IT2 FS) used in the enhanced interval approach (EIA), the Cloud model characterized by only three parameters can manage both uncertainties. Thus, based on the Cloud model, this paper proposes a new representation model for a word from interval-valued data. In our proposed method, firstly, the collected data intervals are preprocessed to remove the bad ones. Secondly, the fuzzy statistical method is used to compute the histogram of the surviving intervals. Then, the generated histogram is fitted by a Gaussian curve function. Finally, the fitted results are mapped into the parameters of a Cloud model to obtain the parametric model for a word. Compared with eight or nine parameters needed by an 112 FS, only three parameters are needed to represent a Cloud model. Therefore, we develop a much more parsimonious parametric model for a word based on the Cloud model. Generally a simpler representation model with less parameters usually means less computations and memory requirements in applications. Moreover, the comparison experiments with the recent EIA show that, our proposed method can not only obtain much thinner footprints of uncertainty (FOUs) but also capture sufficient uncertainties of words. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available