4.5 Article

Tensile forces on sutures in the human lateral knee meniscus

Journal

KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY
Volume 17, Issue 11, Pages 1354-1359

Publisher

SPRINGER
DOI: 10.1007/s00167-009-0875-0

Keywords

Biomechanics; Lateral menisci; Knee; In vitro; Tensile strength

Ask authors/readers for more resources

Tensile strength is the most often reported parameter in biomechanical investigations of meniscal repair techniques. However, the magnitude of the tensile forces that actually occur on repaired lesions is not clear. The purpose of this study was to investigate if tensile forces occur on repaired lateral meniscal lesions, which could exceed the failure strength of common repair techniques. In human knees (n = 6), vertical-longitudinal lesions 25 mm in length were created in the posterior horn of the lateral meniscus at a distance of 3 mm from the meniscosynovial junction and the popliteal hiatus. A braided steel wire, resembling a vertical suture, was inserted into the meniscal tissue and fitted with a force transducer. The knees were mounted in an apparatus, which simulated weight bearing and non-weight bearing conditions. Repeated measurements were conducted with both internal and external rotation at flexion angles of 0A degrees, 30A degrees, 60A degrees, 90A degrees and 120A degrees. Weight loading alone caused no tension on the suture. Combined flexion and rotation generated mean forces between 0.5 and 4.1 N. No significant effect of the flexion angle or direction of rotation was found. If a minimum strength of 10 N was assumed for the common meniscal repair techniques, the tensile forces were well below this limit under all circumstances (P < 0.001). These data indicate that, within the range of motion investigated, no significant tensile forces occur on longitudinal lateral lesions. Forces other than tension and biological factors are of greater importance for the healing. Therefore, the assessment of repair techniques should not be based on alone the ability to resist high distraction forces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available