4.7 Article

Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism

Journal

KIDNEY INTERNATIONAL
Volume 84, Issue 6, Pages 1189-1197

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/ki.2013.215

Keywords

albuminuria; diabetic nephropathy; nitric oxide

Funding

  1. NIH [DK077444, DK094930, GM57384]
  2. Pennsylvania Department of Health using Tobacco CURE Funds

Ask authors/readers for more resources

Recently, we showed that pharmacological blockade or genetic deficiency of arginase-2 confers kidney protection in diabetic mouse models. Here, we tested whether the protective effect of arginase inhibition is nitric oxide synthase 3 (eNOS) dependent in diabetic nephropathy. Experiments were conducted in eNOS-knockout and their wild-type littermate mice using multiple low doses of vehicle or streptozotocin, and treated with continuous subcutaneous infusion of vehicle or the arginase inhibitor S-(2-boronoethyl)-L-cysteine by an osmotic pump. Inhibition of arginases for 6 weeks in diabetic wild-type mice significantly attenuated albuminuria, the increase in plasma creatinine and blood urea nitrogen, histopathological changes, kidney fibronectin and TNF-alpha expression, kidney macrophage recruitment, and oxidative stress compared with vehicle-treated diabetic wild-type mice. Arginase inhibition in diabetic eNOS-knockout mice failed to affect any of these parameters, but reduced kidney macrophage recruitment and kidney TNF-alpha expression compared with vehicle-treated diabetic eNOS-knockout mice. Furthermore, diabetic wild-type and eNOS-knockout mice exhibited increased kidney arginase-2 protein, arginase activity, and ornithine levels. Thus, arginase inhibition mediates renal tissue protection in diabetic nephropathy by an eNOS-dependent mechanism and has an eNOS-independent effect on kidney macrophage recruitment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available