4.7 Review

Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy

Journal

KIDNEY INTERNATIONAL
Volume 75, Issue 11, Pages 1145-1152

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/ki.2009.86

Keywords

apoptosis; fibrosis; macrophages; obstructive nephropathy; progression of chronic renal failure

Ask authors/readers for more resources

Renal fibrosis is the hallmark of progressive renal disease of virtually any etiology. The model of unilateral ureteral obstruction (UUO) in the rodent generates progressive renal fibrosis. Surgically created UUO can be experimentally manipulated with respect to timing, severity, and duration, while reversal of the obstruction permits the study of recovery. The use of genetically engineered mice has greatly expanded the utility of the model in studying molecular mechanisms underlying the renal response to UUO. Ureteral obstruction results in marked renal hemodynamic and metabolic changes, followed by tubular injury and cell death by apoptosis or necrosis, with interstitial macrophage infiltration. Proliferation of interstitial fibroblasts with myofibroblast transformation leads to excess deposition of the extracellular matrix and renal fibrosis. Phenotypic transition of resident renal tubular cells, endothelial cells, and pericytes has also been implicated in this process. Technical aspects of the UUO model are discussed in this review, including the importance of rodent species or strain, the age of the animal, surgical procedures, and histological methods. The UUO model is likely to reveal useful biomarkers of progression of renal disease, as well as new therapies, which are desperately needed to allow intervention before the establishment of irreversible renal injury. Kidney International (2009) 75, 1145-1152; doi:10.1038/ki.2009.86;published online 1 April 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available