4.7 Article

Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization

Journal

APPLIED SOFT COMPUTING
Volume 33, Issue -, Pages 304-327

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2015.04.019

Keywords

Differential evolution; Large-scale optimization; DE mutation strategies; Scalability

Ask authors/readers for more resources

Differential evolution (DE) is a simple, yet very effective, population-based search technique. However, it is challenging to maintain a balance between exploration and exploitation behaviors of the DE algorithm. In this paper, we boost the population diversity while preserving simplicity by introducing a multipopulation DE to solve large-scale global optimization problems. In the proposed algorithm, called mDEbES, the population is divided into independent subgroups, each with different mutation and update strategies. A novel mutation strategy that uses information from either the best individual or a randomly selected one is used to produce quality solutions to balance exploration and exploitation. Selection of individuals for some of the tested mutation strategies utilizes fitness-based ranks of these individuals. Function evaluations are divided into epochs. At the end of each epoch, individuals between the subgroups are exchanged to facilitate information exchange at a slow pace. The performance of the algorithm is evaluated on a set of 19 large-scale continuous optimization problems. A comparative study is carried out with other state-of-the-art optimization techniques. The results show that mDE-bES has a competitive performance and scalability behavior compared to the contestant algorithms. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available