4.7 Article

The physical and biological characterization of a frail mouse model

Publisher

GERONTOLOGICAL SOC AMER
DOI: 10.1093/gerona/63.4.391

Keywords

frailty; mouse model

Funding

  1. Intramural NIH HHS [Z99 AG999999] Funding Source: Medline
  2. NIA NIH HHS [P30 AG021334] Funding Source: Medline

Ask authors/readers for more resources

Background. The development of animal models that approximate human frailty is necessary to facilitate etiologic and treatment-focused frailty research. The genetically altered IL-10(tm/tm) mouse does not express the antiinflammatory cytokine interleukin 10 (IL-10) and is, like frail humans, more susceptible to inflammatory pathway activation. We hypothesized that with increasing age, IL-10(tm/tm) mice would develop physical and biological characteristics similar to those of human frailty as compared to C57BL/6J control mice. Methods. Strength, activity, serum IL-6, and skeletal muscle gene expression were compared between age-matched and gender-matched IL-10(tm/tm) mice on C57BL/6J background and C57BL/6J control mice using a longitudinal design for physical characteristics and cross-sectional design for biological characteristics. Results. Strength levels declined significantly faster in IL-10(tm/tm) compared to control mice with increasing age. Serum IL-6 levels were significantly higher in older compared to younger IL-10(tm/tm) mice and were significantly higher in older IL-10(tm/tm) compared to age- and gender-matched C57BL/6J control mice. One hundred twenty-five genes, many related to mitochondrial biology and apoptosis, were differentially expressed in skeletal muscle between 50-week-old IL-10(tm/tm) and 50-week-old C57BL/6J mice. No expression differences between IL-10(tm/tm) age groups were identified by quantitative polymerase chain reaction. Conclusion. These physical and biological findings suggest that the IL-10(tm/tm) mouse develops inflammation and strength decline consistent with human frailty at an earlier age compared to C57BL/6J control type mice. This finding provides rationale for the further development and utilization of the IL-10(tm/tm) mouse to study the biological basis of frailty.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available