4.7 Article Proceedings Paper

CFD simulations of gas dispersion around high-rise building in non-isothermal boundary layer

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jweia.2011.01.006

Keywords

Non-isothermal flow; Gas dispersion; RANS; LES; Inflow turbulence

Funding

  1. Grants-in-Aid for Scientific Research [21360283] Funding Source: KAKEN

Ask authors/readers for more resources

Urban heat island phenomena and air pollution become serious problems in weak wind regions such as behind buildings and within street canyons, where buoyancy effect cannot be neglected. In order to apply CFD techniques for estimation of ventilation and thermal and pollutant dispersion in urban areas, it is important to assess the performance of turbulence models adopted to simulate these phenomena. As the first step of this study, we carried out wind tunnel experiments and CFD simulations of gas and thermal dispersion behind a high-rise building in an unstable non-isothermal turbulent flow. The standard kappa-epsilon model and a two-equation heat-transfer model as RANS models, and LES, were used for the CFD simulation. One of the important purposes of this study was to clarify the effect of inflow turbulence (both velocity and temperature) on flow field and gas/thermal dispersion for the LES calculation. Thus, LES calculations with/without inflow turbulence were conducted. The inflow turbulence was generated through a separate precursor simulation. The calculated results showed that both RANS models overestimated the size of the recirculation region behind the building and underestimated the lateral dispersion of the gas. Turbulent flow structures of LES with and without inflow turbulence were completely different. The LES result with inflow turbulence achieved better agreement with the experiment. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available