4.3 Article

Spatial Partitioning of Predation Risk in a Multiple Predator-Multiple Prey System

Journal

JOURNAL OF WILDLIFE MANAGEMENT
Volume 73, Issue 6, Pages 876-884

Publisher

WILDLIFE SOC
DOI: 10.2193/2008-325

Keywords

antipredator behavior; functional response; habitat attributes; predation; risk enhancement; spatial modeling

Funding

  1. United States Department of Agriculture
  2. Animal Plant Health Inspection Service-
  3. Wildlife Services
  4. National Wildlife Research Center, Boone
  5. Crockett Club, Pope
  6. Young Club
  7. Turner Endangered Species Foundation
  8. Turner Enterprises International

Ask authors/readers for more resources

Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management. (JOURNAL OF WILDLIFE MANAGEMENT 73(6): 876-884; 2009)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available