4.3 Article

Single-Objective versus Multiobjective Optimization of Water Distribution Systems Accounting for Greenhouse Gas Emissions by Carbon Pricing

Journal

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)WR.1943-5452.0000072

Keywords

Water distribution systems; Multiobjective optimization; Genetic algorithms; Greenhouse gas emissions; Sustainability; Carbon dioxide

Funding

  1. eResearch SA

Ask authors/readers for more resources

Previous research has demonstrated that there are significant trade-offs between the competing objectives of minimizing costs and greenhouse gas (GHG) emissions for water distribution system (WDS) optimization. However, upon introduction of an emission trading scheme, GHG emissions are likely to be priced at a particular level. Thus, a monetary value can be assigned to GHG emissions, enabling a single-objective optimization approach to be used. This raises the question of whether the introduction of carbon pricing under an emission trading scheme will make the use of a multiobjective optimization approach obsolete or whether such an approach can provide additional insights that are useful in a decision-making context. In this paper, the above questions are explored via two case studies. The optimization results obtained for the two case studies using both single-objective and multiobjective approaches are analyzed. The analyses show that the single-objective approach results in a loss of trade-off information between the two objectives. In contrast, the multiobjective approach provides decision makers with more insight into the trade-offs between the two objectives. As a result, a multiobjective approach is recommended for the optimization of WDSs accounting for GHG emissions when considering carbon pricing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available