4.6 Article

Attenuation of Human Enterovirus 71 High-Replication-Fidelity Variants in AG129 Mice

Journal

JOURNAL OF VIROLOGY
Volume 88, Issue 10, Pages 5803-5815

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00289-14

Keywords

-

Categories

Funding

  1. Temasek Life Sciences Laboratory, Ltd. (Singapore), a beneficiary of the Temasek Trust

Ask authors/readers for more resources

In a screen for ribavirin resistance, a novel high-fidelity variant of human enterovirus 71 (EV71) with the single amino acid change L123F in its RNA-dependent RNA polymerase (RdRp or 3D) was identified. Based on the crystal structure of EV71 RdRp, L123 locates at the entrance of the RNA template binding channel, which might form a fidelity checkpoint. EV71 RdRp-L123F variants generated less progeny in a guanidine resistance assay and virus populations with lower mutation frequencies in cell culture passage due to their higher replication fidelity. However, compared with wild-type viruses, they did not show growth defects. In vivo infections further revealed that high-fidelity mutations L123F and G64R (previously reported) negatively impacted EV71 fitness and greatly reduced viral pathogenicity alone or together in AG129 mice. Interestingly, a variant with double mutations, RG/B4-G64R/L123F (where RG/B4 is an EV71 genotype B4 virus constructed by reverse genetics [RG]) showed higher fidelity in vitro and less virulence in vivo than any one of the above two single mutants. The 50% lethal dose (LD50) of the double mutant increased more than 500 times compared with the LD50 of wild-type RG/B4 in mice. The results indicated that these high-fidelity variants exhibited an attenuated pathogenic phenotype in vivo and offer promise as a live attenuated EV71 vaccine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available