4.6 Article

SCE1, the SUMO-Conjugating Enzyme in Plants That Interacts with NIb, the RNA-Dependent RNA Polymerase of Turnip Mosaic Virus, Is Required for Viral Infection

Journal

JOURNAL OF VIROLOGY
Volume 87, Issue 8, Pages 4704-4715

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02828-12

Keywords

-

Categories

Funding

  1. AAFC
  2. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

SUMOylation, which is catalyzed by small ubiquitin-like modifier (SUMO) enzymes, is a transient, reversible posttranslational protein modification that regulates diverse cellular processes. Potyviruses, the largest group of known plant viruses, comprise many agriculturally important viruses, such as Turnip mosaic virus (TuMV). The potyviral genome encodes 11 mature proteins. To investigate if SUMOylation plays a role in potyvirus infection, a yeast two-hybrid screen was performed to examine possible interactions of each of the 11 viral proteins of TuMV with AtSCE1, the only SUMO-conjugating enzyme in Arabidopsis thaliana homologous to the key SUMO-conjugating enzyme E2 in mammalian cells or Ubc9 in yeast. A positive reaction was found between AtSCE1 and NIb, the potyviral RNA-dependent RNA polymerase. Further bimolecular fluorescence complementation (BiFC) and fluorescence resonance energy transfer (FRET) assays revealed that the NIb and AtSCE1 interaction occurred in both the cytoplasm and nuclei of epidermal cells of Nicotiana benthamiana. The interaction motif was mapped to a region encompassing NIb amino acids 171 to 300 which contains a potential negatively charged amino acid-dependent SUMOylation motif (NDSM). An Escherichia coli SUMOylation assay showed that NIb can be SUMOylated and that the lysine residue (K172) in the motif is a potent SUMOylation site. A TuMV infectious clone with an arginine (R) substitution mutation at K172 compromised TuMV infectivity in plants. In comparison with wild-type Arabidopsis plants, sce1 knockdown plants exhibited increased resistance to TuMV as well as a nonrelated RNA virus. To the best of our knowledge, this is the first report showing that the host SUMO modification system plays an essential role in infection by plant RNA viruses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available