4.6 Article

Structure-Function Analysis of Severe Acute Respiratory Syndrome Coronavirus RNA Cap Guanine-N7-Methyltransferase

Journal

JOURNAL OF VIROLOGY
Volume 87, Issue 11, Pages 6296-6305

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00061-13

Keywords

-

Categories

Funding

  1. China 973 Basic Research Program [2010CB911800, 2013CB911101]
  2. China NSFC [81130083, 30925003, 81271817, 31221061]
  3. Fundamental Research Funds for the Central Universities [1101003]

Ask authors/readers for more resources

Coronaviruses possess a cap structure at the 5' ends of viral genomic RNA and subgenomic RNAs, which is generated through consecutive methylations by virally encoded guanine-N7-methyltransferase (N7-MTase) and 2'-O-methyltransferase (2'-O-MTase). The coronaviral N7-MTase is unique for its physical linkage with an exoribonuclease (ExoN) harbored in nonstructural protein 14 (nsp14) of coronaviruses. In this study, the structure-function relationships of the N7-MTase were analyzed by deletion and site-directed mutagenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp14. The results showed that the ExoN domain is closely involved in the activity of the N7-MTase, suggesting that coronavirus N7-MTase is different from all other viral N7-MTases, which are separable from other structural domains located in the same polypeptide. Two of the 12 critical residues identified to be essential for the N7-MTase were located at the N terminus of the core ExoN domain, reinforcing a role of the ExoN domain in the N7-MTase activity of nsp14. The other 10 critical residues were distributed throughout the N7-MTase domain but localized mainly in the S-adenosyl-L-methionine (SAM)-binding pocket and key structural elements of the MTase fold of nsp14. The sequence motif DxGxPxA (amino acids [aa] 331 to 338) was identified as the key part of the SAM-binding site. These results provide insights into the structure and functional mechanisms of coronaviral nsp14 N7-MTase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available