4.6 Article

Temporal- and Strain-Specific Host MicroRNA Molecular Signatures Associated with Swine-Origin H1N1 and Avian-Origin H7N7 Influenza A Virus Infection

Journal

JOURNAL OF VIROLOGY
Volume 86, Issue 11, Pages 6109-6122

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.06892-11

Keywords

-

Categories

Funding

  1. Canadian Institutes of Health Research [TPA-90195]
  2. Public Health Agency of Canada [4500231387]
  3. National Science Foundation

Ask authors/readers for more resources

MicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to virus-associated diseases involving members of the Hepacivirus, Herpesvirus, and Retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the life cycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenicity swine-origin infA (S-OIV) pandemic HI NI (2009) and highly pathogenic avian-origin infA (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral life cycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time points during the viral life cycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including the immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available