4.6 Article

Latent HIV-1 Infection Occurs in Multiple Subsets of Hematopoietic Progenitor Cells and Is Reversed by NF-κB Activation

Journal

JOURNAL OF VIROLOGY
Volume 86, Issue 17, Pages 9337-9350

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00895-12

Keywords

-

Categories

Funding

  1. Burroughs Wellcome Foundation
  2. U.S. National Institutes of Health [RO1 A1096962, R21 A1086599]
  3. U.S. National Science Foundation [DGE 0718128]
  4. University of Michigan
  5. Cancer Center Support grant [5 P30 CA46592]

Ask authors/readers for more resources

The ability of HIV-1 to establish a latent infection presents a barrier to curing HIV. The best-studied reservoir of latent virus in vivo is resting memory CD4(+) T cells, but it has recently been shown that CD34(+) hematopoietic progenitor cells (HPCs) can also become latently infected by HIV-1 in vitro and in vivo. CD34(+) cells are not homogenous, however, and it is not yet known which types of CD34(+) cells support a latent infection. Furthermore, the mechanisms through which latency is established in this cell type are not yet known. Here we report the development of a primary cell model for latent HIV-1 infection in HPCs. We demonstrate that in this model, latent infection can be established in all subsets of HPCs examined, including HPCs with cell surface markers consistent with immature hematopoietic stem and progenitor cells. We further show that the establishment of latent infection in these cells can be reversed by tumor necrosis factor alpha (TNF-alpha) through an NF-kappa B-dependent mechanism. In contrast, we do not find evidence for a role of positive transcription elongation factor b (P-TEFb) in the establishment of latent infection in HPCs. Finally, we demonstrate that prostratin and suberoylanilide hydroxamic acid (SAHA), but not hexamethylene bisacetamide (HMBA) or 5-aza-2'-deoxycytidine (Aza-CdR), reactivate latent HIV-1 in HPCs. These findings illuminate the mechanisms through which latent infection can be established in HPCs and suggest common pathways through which latent virus could be reactivated in both HPCs and resting memory T cells to eliminate latent reservoirs of HIV-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available