4.6 Article

Improved Knockout Methodology Reveals That Frog Virus 3 Mutants Lacking either the 18K Immediate-Early Gene or the Truncated vIF-2α Gene Are Defective for Replication and Growth In Vivo

Journal

JOURNAL OF VIROLOGY
Volume 85, Issue 21, Pages 11131-11138

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.05589-11

Keywords

-

Categories

Funding

  1. NIH [R24-AI-059830]
  2. NSF [IOS-074271]
  3. Direct For Biological Sciences
  4. Division Of Integrative Organismal Systems [0742711] Funding Source: National Science Foundation

Ask authors/readers for more resources

To better assess the roles of frog virus 3 (FV3; genus Ranavirus, family Iridoviridae) genes in virulence and immune evasion, we have developed a reliable and efficient method to systematically knock out (KO) putative virulence genes by site-specific integration into the FV3 genome. Our approach utilizes a dual selection marker consisting of the puromycin resistance gene fused in frame with the enhanced green fluorescent protein (EGFP) reporter (Puro-EGFP cassette) under the control of the FV3 immediate-early (IE) 18K promoter. By successive rounds of selection for puromycin resistance and GFP expression, we have successfully constructed three recombinant viruses. In one, a knock-in mutant was created by inserting the Puro-EGFP cassette into a noncoding region of the FV3 genome (FV3-Puro/GFP). In the remaining two, KO mutants were constructed by replacement of the truncated viral homolog of eIF-2 alpha (FV3-Delta vIF-2 alpha) or the 18K IE gene (FV3-Delta 18K) with the Puro-EGFP cassette. The specificity of recombination and the clonality of each mutant were confirmed by PCR, sequencing, and immunofluorescence microscopy. Viral replication of each recombinant in cell culture was similar to that of parental FV3; however, infection in Xenopus laevis tadpoles revealed that FV3-Delta vIF-2 alpha and FV3-Delta 18K replicated less and resulted in lower mortality than did GFP-FV3 and wild-type FV3. Our results suggest that 18K, which is conserved in all ranaviruses, and the truncated vIF-2 alpha gene contribute to virulence. In addition, our study describes a powerful methodology that lays the foundation for the discovery of potentially new ranaviral genes involved in virulence and immune escape.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available