4.6 Article

Cutaneous Human Papillomavirus Type 38 E7 Regulates Actin Cytoskeleton Structure for Increasing Cell Proliferation through CK2 and the Eukaryotic Elongation Factor 1A

Journal

JOURNAL OF VIROLOGY
Volume 85, Issue 17, Pages 8477-8494

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02561-10

Keywords

-

Categories

Funding

  1. Association pour la Recherche Contre le Cancer
  2. La Ligue Contre le Cancer du Comite du Rhone
  3. Comite de la Drome
  4. Association for Research on Cancer
  5. IARC

Ask authors/readers for more resources

We previously reported that the oncoproteins E6 and E7 from cutaneous human papillomavirus type 38 (HPV38) can immortalize primary human keratinocytes in vitro and sensitize transgenic mice to develop skin cancer in vivo. Immunofluorescence staining revealed that human keratinocytes immortalized by HPV38 E6 and E7 display fewer actin stress fibers than do control primary keratinocyte cells, raising the possibility of a role of the viral oncoproteins in the remodeling of the actin cytoskeleton. In this study, we show that HPV38 E7 induces actin stress fiber disruption and that this phenomenon correlates with its ability to downregulate Rho activity. The downregulation of Rho activity by HPV38 E7 is mediated through the activation of the CK2-MEK-extracellular signal-regulated kinase (ERK) pathway. In addition, HPV38 E7 is able to induce actin fiber disruption by binding directly to eukaryotic elongation factor 1A (eEF1A) and abolishing its effects on actin fiber formation. Finally, we found that the downregulation of Rho activity by HPV38 E7 through the CK2-MEK-ERK pathway facilitates cell growth proliferation. Taken together, our data support the conclusion that HPV38 E7 promotes keratinocyte proliferation in part by negatively regulating actin cytoskeleton fiber formation through the CK2-MEK-ERK-Rho pathway and by binding to eEF1A and inhibiting its effects on actin cytoskeleton remodeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available