4.6 Article

Varicella-Zoster Virus Immediate-Early Protein 62 Blocks Interferon Regulatory Factor 3 (IRF3) Phosphorylation at Key Serine Residues: a Novel Mechanism of IRF3 Inhibition among Herpesviruses

Journal

JOURNAL OF VIROLOGY
Volume 84, Issue 18, Pages 9240-9253

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01147-10

Keywords

-

Categories

Funding

  1. NIH [AI053846, AI20459]
  2. National Cancer Institute [CA49605]

Ask authors/readers for more resources

Varicella-zoster virus (VZV) is an alphaherpesvirus that is restricted to humans. VZV infection of differentiated cells within the host and establishment of latency likely require evasion of innate immunity and limited secretion of antiviral cytokines. Since interferons (IFNs) severely limit VZV replication, we examined the ability of VZV to modulate the induction of the type I IFN response in primary human embryonic lung fibroblasts (HELF). IFN-beta production was not detected, and transcription of two interferon response factor 3 (IRF3)-dependent interferon-stimulated genes (ISGs), ISG54 and ISG56, in response to poly(I:C) stimulation was downregulated in VZV-infected HELF. Inhibition of IRF3 function did not require VZV replication; the viral immediate-early protein 62 (IE62) alone was sufficient to produce this effect. IE62 blocked TBK1-mediated IFN-beta secretion and IRF3 function, as shown in an IFN-stimulated response element (ISRE)-luciferase reporter assay. However, IRF3 function was preserved if constitutively active IRF3 (IRF3-5D) was expressed in VZV-infected or IE62-transfected cells, indicating that VZV interferes with IRF3 phosphorylation. IE62-mediated inhibition was mapped to blocking phosphorylation of at least three serine residues on IRF3. However, IE62 binding to TBK1 or IRF3 was not detected and IE62 did not perturb TBK1-IRF3 complex formation. IE62-mediated inhibition of IRF3 function was maintained even if IE62 transactivator activity was disrupted. Thus, IE62 has two critical but discrete roles following VZV entry: to induce expression of VZV genes and to disarm the IFN-dependent antiviral defense through a novel mechanism that prevents IRF3 phosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available