4.6 Article

Genetic and Phenotypic Characterization of GII-4 Noroviruses That Circulated during 1987 to 2008

Journal

JOURNAL OF VIROLOGY
Volume 84, Issue 18, Pages 9595-9607

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02614-09

Keywords

-

Categories

Funding

  1. National Institute of Health
  2. National Institute of Allergy and Infectious Diseases [R01 AI37093, R01 AI55649]
  3. National Institute of Child Health [PO1 HD13021]
  4. Department of Defense [PR033018]
  5. Translational Research Initiative of Cincinnati Children's Hospital Medical Center [SPR102032]

Ask authors/readers for more resources

The predominance and continual emergence of new variants in GII-4 noroviruses (NVs) in recent years have raised questions about the role of host immunity and histo-blood group antigens (HBGAs) in NV evolution. To address these questions, we performed a genetic and phenotypic characterization of GII-4 variants circulating in the past decade (1998 to 2008). Ninety-three GII-4 sequences were analyzed, and of them, 16 strains representing 6 genetic clusters were selected for further characterization. The HBGA binding properties were determined by both saliva-and oligosaccharide-binding assays using P particles as a model of NV capsid. The antigenic properties were also examined by enzyme immunoassay (EIA), Western blot analysis, and receptor blocking assay, using P-particle-specific antibodies from immunized mice and GII-4 virus-infected patients. Our results showed that 15 of the 16 GII-4 viruses bound to saliva of all A, B, and O secretors. Oligosaccharide binding assays yielded largely consistent results, although the binding affinities to some oligosaccharides varied among some strains. The only nonbinder had a mutation in the binding site. While antigenic variations were detected among the 16 strains, significant cross-blocking on the HBGA binding was also noted. Sequence alignment revealed high conservation of HBGA binding interfaces with some variations in adjacent regions. Taken together, our data suggested that the ability of GII-4 to recognize different secretor HBGAs persisted over the past decade, which may explain the predominance of GII-4 over other genotypes. Our data also indicated that both the host immunity and HBGAs play a role in NV evolution. While host immunity may continue driving NV for antigenic change, the functional selection by the HBGAs tends to lock the architecture of the capsid/HBGA interfaces and allows only limited variations outside the HBGA binding sites. A potential outcome of such counterselection between theses two factors in NV evolution is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available