4.5 Review

Positron-Emitting Myocardial Blood Flow Tracers and Clinical Potential

Journal

PROGRESS IN CARDIOVASCULAR DISEASES
Volume 57, Issue 6, Pages 588-606

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.pcad.2015.01.001

Keywords

Coronary artery disease; Coronary circulation; Ischemia; Myocardial blood flow; Myocardial perfusion; PET; Positron-emitting radiotracers

Funding

  1. Johns Hopkins University, Baltimore, MD, USA
  2. Swiss National Science Foundation (SNF) [3200B0-122237]

Ask authors/readers for more resources

Positron-emitting myocardial flow radiotracers such as O-15-water, N-13-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of O-15-water and N-13-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99 m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available