4.6 Article

Different Tempo and Anatomic Location of Dual-Tropic and X4 Virus Emergence in a Model of R5 Simian-Human Immunodeficiency Virus Infection

Journal

JOURNAL OF VIROLOGY
Volume 84, Issue 1, Pages 340-351

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01865-09

Keywords

-

Categories

Funding

  1. National Institutes of Health [RO1AI46980, R37AI41945]
  2. Tulane National Primate Research Center Base [RR00164]
  3. NATIONAL CENTER FOR RESEARCH RESOURCES [P51RR000164] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R37AI041945, R01AI046980] Funding Source: NIH RePORTER

Ask authors/readers for more resources

We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4(+) T-cell count but followed rather than preceded the onset of CD4(+) T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available