4.6 Article

CD20, CD3, and CD40 Ligand Microclusters Segregate Three-Dimensionally In Vivo at B-Cell-T-Cell Immunological Synapses after Viral Immunity in Primate Brain

Journal

JOURNAL OF VIROLOGY
Volume 82, Issue 20, Pages 9978-9993

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01326-08

Keywords

-

Categories

Funding

  1. Spanish Ministry of Science [SAF 2004 07656 C02- 02]
  2. Fundacion Seneca [FS/05662/PI/07]
  3. CIBERNED

Ask authors/readers for more resources

The clearance of virally infected cells from the brain is mediated by T cells that engage antigen-presenting cells to form supramolecular activation clusters at the immunological synapse. However, after clearance, the T cells persist at the infection site and remain activated locally. In the present work the long-term interactions of immune cells in brains of monkeys were imaged in situ 9 months after the viral inoculation. After viral immunity, the persistent infiltration of T cells and B cells was observed at the infection sites. T cells showed evidence of T-cell receptor signaling as a result of contacts with B cells. Three-dimensional analysis of B-cell-T-cell synapses showed clusters of CD3 in T cells and the segregation of CD20 in B cells, involving the recruitment of CD40 ligand at the interface. These results demonstrate that immunological synapses between B cells and T cells forming three-dimensional microclusters occur in vivo in the central nervous system and suggest that these interactions may be involved in the lymphocyte activation after viral immunity at the original infection site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available