4.1 Article

Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer

Journal

JOURNAL OF VETERINARY MEDICAL SCIENCE
Volume 70, Issue 2, Pages 167-173

Publisher

JAPAN SOC VET SCI
DOI: 10.1292/jvms.70.167

Keywords

biofilm; biomaterials; device-associated infection; MPC; PMB coating

Ask authors/readers for more resources

Device-associated infections are serious complications, and their prevention is an issue of considerable importance. Since biofilms are responsible for these refractory infections, effective methods to inhibit biofilm formation are required. In this investigation, stainless steel plates with and without 2-methacryloyloxyethyl phosphoryleholine (MPC) polymer, i.e., poly (MPC-co-n-butyl methacrylate) (PMB) coating, were incubated in a medium containing bacteria. In the course of incubation, half of the specimens received antibiotics. The specimens were stained for nucleic acid and poly saccharides, and then examined with a confocal laser scanning microscope. The numbers of bacteria on the specimen Surfaces were evaluated by an ATP assay. On the surfaces of the specimens without PMB coating, the formation of a biofilm enveloping bacteria was confirmed. The addition of antibiotics did not effectively decrease the number of bacteria. On the other hand, on the surfaces of the specimens with PMB coating, no biofilm formation was observed, and the number of bacteria was significantly decreased. The addition of potent antibiotics further decreased the number of bacteria by 1/100 to 1/1000 times. The PMB coating combined with the validated use of antibiotics might provide a method for the simultaneous achievement of biocompatible surfaces of devices and the prevention of device-associated infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available