4.4 Article

Optimization of Radioembolic Effect with Extended-shelf-life Yttrium-90 Microspheres: Results from a Pilot Study

Journal

JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY
Volume 20, Issue 12, Pages 1557-1563

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jvir.2009.08.021

Keywords

-

Ask authors/readers for more resources

PURPOSE: To evaluate the safety and efficacy of yttrium-90 (Y-90) radioembolization with extended-shelf-life glass microspheres. We postulated that this approach, for the same planned tissue dose of 120 Gy, would increase the embolic load, improve distribution, and result in enhanced tumor response without causing additional adverse events. MATERIALS AND METHODS: Between June 2007 and September 2008, 50 patients with extensive tumor burden and/or markedly hypervascular tumors (13 hepatocellular carcinomas, and 37 liver metastases) underwent radioembolization with extended-shelf-life microspheres at a planned dose of 120 Gy. Baseline and follow-up imaging and laboratory data were obtained. Response in the target lesion was assessed with cross-sectional imaging by using World Health Organization (WHO) and European Association for the Study of the Liver (EASL) guidelines. RESULTS: The mean delivered radiation dose was 126 Gy. The mean increase in embolic load with this approach was 111%, corresponding to an increase from 3.6 to 7.3 million microspheres. Clinical toxicities included fatigue (28 patients, 56%), abdominal pain (19 patients, 38%), and nausea/vomiting (six patients, 12%). Grade 3-4 bilirubin toxicity was seen in one patient. Two gastroduodenal ulcers were observed. With cross-sectional imaging, response rates according to WHO and EASL guidelines were 51% and 69%, respectively. CONCLUSIONS: The results demonstrate the safety and efficacy of extended-shelf-life Y-90 glass microspheres. The increased embolic load and lowered activity per microsphere theoretically resulted in better tumor coverage and, hence, improved response rates. This standardizable treatment paradigm provides a minimally embolic therapy for liver tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available