4.8 Article

Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1508073112

Keywords

contractility; sarcomeres; cardiomyocyte; stem cell; single cell

Funding

  1. American Heart Association [14POST18360018, 13POST17390040, 13SDG14580035]
  2. National Science Foundation [MIKS-1136790]
  3. National Institutes of Health [R01-EB006745]
  4. Stanford Cardiovascular Institute
  5. Bio-X
  6. National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/S01302/1] Funding Source: researchfish

Ask authors/readers for more resources

Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-mu m(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available