4.8 Article

Weak lasing in one-dimensional polariton superlattices

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1502666112

Keywords

weak lasing; superlattice; polariton; condensate; symmetry breaking

Funding

  1. 973 projects of China [2011CB925600]
  2. National Science Foundation of China [91121007, 11225419, 11304042]
  3. European Union
  4. Dynasty foundation
  5. Russian President Grant [MK-6029.2014.2]
  6. Russian Ministry of Education and Science [11.G34.31.0067]

Ask authors/readers for more resources

Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain-a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available