4.5 Article

Growth and mechanical properties of 111-oriented V0.5Mo0.5Nx/Al2O3(0001) thin films

Journal

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
Volume 36, Issue 5, Pages -

Publisher

A V S AMER INST PHYSICS
DOI: 10.1116/1.5045048

Keywords

-

Funding

  1. Knut and Alice Wallenberg Foundation [KAW 2011-0094]
  2. Swedish Research Council [VR 2014-5790]
  3. Swedish Government Strategic Research Area Grant in Materials Science (SFO Mat-LiU) on advanced functional materials

Ask authors/readers for more resources

Pseudobinary V0.5Mo0.5Nx(111) alloys with the Bl-NaCl crystal structure are grown on Al2O3(0001) substrates in an ultra-high-vacuum system by reactive magnetron sputter deposition in mixed Ar/N-2 atmospheres at temperatures T-s between 100 and 900 degrees C. Nitrogen-to-metal, N/(V + Mo), fractions x vary monotonically from 0.9 +/- 0.1 with T-s = 100 degrees C to 0.4 +/- 0.1 at T-s = 900 degrees C. Nitrogen loss at higher growth temperatures leads to a corresponding decrease in the relaxed lattice parameter a(o) from 4.21 +/- 0.01 angstrom at T-s = 300 degrees C to 4.125 +/- 0.005 angstrom with T-s = 900 degrees C. Scanning electron micrographs of cube-corner nanoindents extending into the substrate show that the films are relatively ductile, exhibiting material pile-up (plastic flow) around the indent edges. Nanoindentation hardnesses H and elastic moduli E, obtained using a calibrated Berkovich tip, of V0.5Mo0.5Nx(111) layers increase with increasing T-s(decreasing x) from 15 +/- 1 and 198 +/- 5 GPa at 100 degrees C to 23 +/- 2 and 381 +/- 11 GPa at 900 degrees C. These values are lower than the corresponding results obtained for the 001-oriented V0.5Mo0.5Nx films In addition, film wear resistance increases with increasing T-s, while the coefficient of friction, under 1000 mu N loads, is 0.09 +/- 0.01 for all layers. Published by the AVS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available