4.5 Article

Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries

Journal

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
Volume 32, Issue 6, Pages -

Publisher

A V S AMER INST PHYSICS
DOI: 10.1116/1.4894453

Keywords

-

Funding

  1. SRC [1292.008, 2121.001]
  2. MRSEC program of the NSF [DMR-0520425]

Ask authors/readers for more resources

The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined Fuchs-Sondheimer surface scattering model and Mayadas-Shatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p = 0.48 and a grain-boundary reflection coefficient of R = 0.26. (C) 2014 American Vacuum Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available