4.8 Article

FOXO regulates RNA interference in Drosophila and protects from RNA virus infection

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1517124112

Keywords

FOXO; RNAi; Argonaute; viral immunity; Drosophila

Funding

  1. TRiP at Harvard Medical School (NIH/National Institute of General Medical Sciences) [R01-GM084947]
  2. NIH
  3. Ellison Medical foundation [AG-NS-0535-09]

Ask authors/readers for more resources

Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available