4.8 Article

An ancestral bacterial division system is widespread in eukaryotic mitochondria

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1421392112

Keywords

mitochondria; mitochondrial division; Min proteins; MinCDE; mitochondrial fission

Funding

  1. National Research Fund, Luxembourg (FNR)
  2. Nova Scotia Health Research Foundation (NSHRF)
  3. Centre for Comparative Genomics and Evolutionary Bioinformatrics postdoctoral fellowship from the Tula Foundation
  4. Natural Sciences and Engineering Research Council of Canada
  5. Regional Partnerships Program Grant from the Canadian Institutes of Health Research [FRN 62809]
  6. NSHRF
  7. Czech Science Foundation [13-24983S, 13-29423S]
  8. European Regional Development Fund award [CZ.1.05/1.1.00/02.0109]

Ask authors/readers for more resources

Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral alpha-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available