4.8 Article

Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1424872112

Keywords

bioelectrochemistry; isopropanol; biofuel; renewable energy; Ralstonia

Funding

  1. Air Force Office of Scientific Research Grant [FA9550-09-1-0689]
  2. Office of Naval Research Multidisciplinary University Research Initiative Award [N00014-11-1-0725]
  3. National Science Foundation Graduate Research Fellowship
  4. TomKat Trust

Ask authors/readers for more resources

Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H-2 and O-2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available