4.8 Article

Effective charges and virial pressure of concentrated macroion solutions

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1511798112

Keywords

colloids; DLVO; macroions; electrolytes; cell model

Funding

  1. Center for Bio-Inspired Energy Science, which is an Energy Frontier Research Center - the US Department of Energy, Office of Science, Basic Energy Sciences [DESC0000989]
  2. Mexican National Council of Science and Technology (CONACYT)
  3. Office of the Director of Defense Research and Engineering
  4. Air Force Office of Scientific Research [FA9550-10-1-0167]
  5. Dutch Ministry of Education, Culture and Science

Ask authors/readers for more resources

The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin-Landau-Verwey-Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arise in concentrated suspensions. We show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion-macroion spatial correlation and the virial pressure obtained with the EPC model. Our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available