4.8 Article

Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA-RON2 pair

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1515898113

Keywords

Apicomplexa; Toxoplasma gondii; invasion; moving junction; X-ray crystallography

Funding

  1. Canadian Institutes for Health Research [MOP82915]
  2. Agence Nationale de la Recherche [ANR-12-BSV3-0012-01]
  3. Laboratoire d'Excellence ParaFrap [ANR-11-LABX-0024
  4. ]
  5. Fondation pour la Recherche Medicale Equipe FRM [DEQ20130326508]
  6. Canada Research Chair program
  7. Natural Sciences and Engineering Research Council of Canada
  8. Canadian Institute for Advanced Research-Integrated Microbial Biodiversity Program

Ask authors/readers for more resources

Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2(L1). High-resolution crystal structures of TgAMA4 in the apo and TgRON2(L1)-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA-RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite-host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA-RON2 pairs and apicomplexan invasive stages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available