4.8 Article

Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1500873112

Keywords

natural products; genome mining; phosphonic acid; antibiotic

Funding

  1. NIH [P01 GM077596, S10 RR028833]
  2. NIH Ruth L. Kirchstein National Service Award [F32GM100658]
  3. Institute for Genomic Biology Postdoctoral Fellowship
  4. ARS National Program [301]
  5. Grants-in-Aid for Scientific Research [25450102] Funding Source: KAKEN
  6. ARS [813404, ARS-0424489] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed genome mining as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N-5-hydroxyarginine; valinophos, an N-acetyl L-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available