4.5 Review

NEW PERSPECTIVES FOR IN VITRO RISK ASSESSMENT OF MULTIWALLED CARBON NANOTUBES: APPLICATION OF COCULTURE AND BIOINFORMATICS

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10937404.2012.736856

Keywords

-

Funding

  1. NIH [R01LM009500]
  2. NCRR [P20RR16440]

Ask authors/readers for more resources

Nanotechnology is a rapidly expanding field with wide application for industrial and medical use; therefore, understanding the toxicity of engineered nanomaterials is critical for their commercialization. While short-term in vivo studies have been performed to understand the toxicity profile of various nanomaterials, there is a current effort to shift toxicological testing from in vivo observational models to predictive and high-throughput in vitro models. However, conventional monoculture results of nanoparticle exposure are often disparate and not predictive of in vivo toxic effects. A coculture system of multiple cell types allows for cross-talk between cells and better mimics the in vivo environment. This review proposes that advanced coculture models, combined with integrated analysis of genome-wide in vivo and in vitro toxicogenomic data, may lead to development of predictive multigene expression-based models to better determine toxicity profiles of nanomaterials and consequent potential human health risk due to exposure to these compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available