4.2 Article

Associations Between Air Pollution and Peak Expiratory Flow Among Patients with Persistent Asthma

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15287390802445517

Keywords

-

Funding

  1. NHLBI [U10 HL-51810, U10 HL-51834, U10 HL-51831, U10 HL-51823, U10 HL-51845, U10 HL-51843, U10 HL-56443, M01 RR-03186]
  2. ACRN Steering Committee
  3. NATIONAL CENTER FOR RESEARCH RESOURCES [M01RR003186] Funding Source: NIH RePORTER
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [U10HL051843, U10HL051845, U10HL051810, U10HL051831, U10HL051823, U10HL051834, U10HL056443] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Responses of patients with persistent asthma to ambient air pollution may be different from those of general populations. For example, asthma medications may modify the effects of ambient air pollutants on peak expiratory flow (PEF). Few studies examined the association between air pollution and PEF in patients with persistent asthma on well-defined medication regimens using asthma clinical trial data. Airway obstruction effects of ambient air pollutants, using 14,919 person-days of daily self-measured peak expiratory flow (PEF), were assessed from 154 patients with persistent asthma during the 16 wk of active treatment in the Salmeterol Off Corticosteroids Study trial. The three therapies were an inhaled corticosteroid, an inhaled long-acting -agonist, and placebo. The participants were nonsmokers aged 12 through 63 yr, recruited from 6 university-based ambulatory care centers from February 1997 to January 1999. Air pollution data were derived from the U.S. Environmental Protection Agency Aerometric Information Retrieval System. An increase of 10 ppb of ambient daily mean concentrations of NO2 was associated with a decrease in PEF of 1.53 L/min (95% confidence interval [CI] -2.93 to -0.14) in models adjusted for age, gender, race/ethnicity, asthma clinical center, season, week, daily average temperature, and daily average relative humidity. The strongest association between NO2 and PEF was observed among the patients treated with salmeterol. Negative associations were also found between PEF and SO2 and between PEF and PM10, respectively. The results show that the two medication regimens protected against the effects of PM10. However, salmeterol increased the sensitivity to NO2 and triamcinalone enhanced the sensitivity to SO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available