4.5 Article

Responsiveness of human bone marrow stromal cells to shear stress

Journal

Publisher

WILEY
DOI: 10.1002/term.166

Keywords

human bone marrow stromal cells; shear stress; osteoblasts; p38; ERK1/2; Connexin43

Funding

  1. INSERM
  2. ANR PNANO 'Nanobonefiller'

Ask authors/readers for more resources

We examined the hypothesis that human mesenchymal stem cells detect physiological mechanical signals. Human bone marrow stromal cells (HBMSCs) were exposed to fluid shear stress of 12 dynes/cm(2) and analysed for their ability to express osteoblast-specific markers and associated signalling pathways. HBMSCs showed a significant increase in alkaline phosphatase (ALP) gene expression and a marked decrease in type I collagen, while no effect on Cbfa1/Runx2 was detected. This regulation is related to p38 and ERK1/2 activation, although the use of specific inhibitors to these two MAP kinases suggests that ALP mRNA induction is especially dependent on p38 activity, while type I collagen downregulation is ERK1/2-dependent. interestingly, the expression of connexin43, which is involved in cell-to-cell communication of osteoblastic cells through gap junction formation, and its distribution through the cells, were modified by fluid flow (FF). HBMSCs are sensitive to shear stress and it appears essential to take their responsiveness into consideration before associating these regenerative cells with a bioactive biomaterial in a new bone tissue-engineering strategy. Copyright (c) 2009 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available