4.4 Article

M118, a novel low-molecular weight heparin with decreased polydispersity leads to enhanced anticoagulant activity and thrombotic occlusion in ApoE knockout mice

Journal

JOURNAL OF THROMBOSIS AND THROMBOLYSIS
Volume 28, Issue 4, Pages 394-400

Publisher

SPRINGER
DOI: 10.1007/s11239-009-0340-4

Keywords

Heparin; Neutrophil-platelet conjugate; Arterial thrombosis; LMWH; Carotid artery; Rose Bengal laser induced model of arterial injury

Funding

  1. Momenta Pharmaceuticals, Cambridge, MA (JEF)

Ask authors/readers for more resources

Heparin and low-molecular weight heparin (LMWH) are complex, heterogeneous polysaccharides used in the treatment of arterial and venous thrombosis. M118 is a novel LMWH with low polydispersity and pronounced anti-Xa and anti-thrombin (IIa) activity as compared to current LMWHs. To determine if M118 is effective in preventing thrombosis in the setting of a vascular plaque, apolipoprotein E knockout mice fed a high fat diet were injected with M118, enoxaparin, unfractionated heparin, or saline control and examined for arterial thrombosis using a rose bengal laser induced carotid artery injury model. M118 significantly increased the time to occlusion as compared to control and unfractionated heparin but not compared to enoxaparin although fewer M118 treated animals had any vascular occlusion present at the time of protocol completion. Platelet-neutrophil aggregates were studied by flow cytometry and were found to be decreased with M118 as compared to enoxaparin. This is the first published report examining M118, a novel LMWH designed to have low polydispersity and enhanced anticoagulant activity. In an animal model of vascular plaque, M118 is a potent inhibitor of arterial thrombosis and, despite lower in vivo anti-Xa and anti-IIa activity levels, M118 was superior to UFH in the prevention of arterial thrombosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available