4.6 Article

Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes

Journal

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
Volume 6, Issue 11, Pages 1900-1907

Publisher

WILEY
DOI: 10.1111/j.1538-7836.2008.03132.x

Keywords

adhesive protein; human megakaryocytes; membrane receptors; myosin IIA; proplatelet formation

Funding

  1. Italian Telethon Foundation [GGP06177]
  2. Cariplo Foundation and from the Banca del Monte di Lombardia Foundation

Ask authors/readers for more resources

Background: Megakaryocytes release platelets from the tips of cytoplasmic extensions, called proplatelets. In humans, the regulation of this process is still poorly characterized. Objective: To analyse the regulation of proplatelet formation by megakaryocyte adhesion to extracellular adhesive proteins through different membrane receptors. Methods: Human megakaryocytes were obtained by differentiation of cord blood-derived CD34(+) cells, and proplatelet formation was evaluated by phase contrast and fluorescence microscopy. Results: We found that human megakaryocytes extended proplatelets in a time-dependent manner. Adhesion to fibrinogen, fibronectin or von Willebrand factor (VWF) anticipated the development of proplatelets, but dramatically limited both amplitude and duration of the process. Type I, but not type III or type IV, collagen totally suppressed proplatelet extension, and this effect was overcome by the myosin IIA antagonist blebbistatin. Integrin alpha IIb beta 3 was essential for megakaryocyte spreading on fibrinogen or VWF, but was not required for proplatelet formation. In contrast, proplatelet formation was prevented by blockade of GPIb-IX-V, or upon cleavage of GPIb alpha by the metalloproteinase mocarhagin. Membrane-associated VWF was detected exclusively on proplatelet-forming megakaryocytes, but not on round mature cells that do not extend proplatelets. Conclusions: Our findings show that proplatelet formation in human megakaryocytes undergoes a complex spatio-temporal regulation orchestrated by adhesive proteins, GPIb-IX-V and myosin IIA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available